2011年7月7日 星期四

Those earlier versions were underpowered

While 3D TVs have been available for over a year, the first crop of 3D front projectors are shipping now. The models I'm aware of use either digital light processing (DLP) or liquid crystal on silicon (LCoS) imaging technologies, and all of them are engineered to operate with active shutter glasses, with the exception of LG's $15,000 CF3D, which works with passive eyewear.

Mitsubishi's HC9000D has been in development for the better part of a year, and I had the chance to see it in the prototype stage a few times prior to this review. Those earlier versions were underpowered, making the 3D footage they projected unusually dark.

Now, Mitsubishi has started shipping a fully-powered chassis with some interesting bells and whistles inside. It comes with power zoom, focus, and lens shift, plus multi-step gamma correction and a two-position IR emitter for synchronizing its active shutter glasses.


This is not a small projector, nor is it particularly light at 32 pounds. But it does have that cool gloss black finish that disappears into the darkness, plus an aerodynamic housing with all of the connectors along the left side, and not in the back.

The imaging engine for the HC9000D may be a surprise to you: It uses three .61" SXRD LCoS chips, just like the previously-mentioned LG CF3D and of course, both of Sony's 3D front projector offerings. This is Mitsubishi's first foray into reflective imaging, and LCoS offers a much lower cost than 3-chip DLP engines.

3D projectors need lots of light to overcome all of the polarization losses in active shutter glasses, so Mits has equipped the HC9000D with a 230-watt short-arc lamp. The supplied zoom lens has a ratio of 1.8:1, adequate for any home theater set-up as it easily lit up my Da-Lite Affinity 92" screen at a distance of 12 feet.

The input connectors include a pair of HDMI 1.4a inputs that also support ten different standard digital computer resolutions, and there's also an analog VGA PC input connector for everything from 640¡Á480 to 1080p/60. Mitsubishi has also provided a single component video (YPbPr) input, plus composite and S-video jacks. (Question: Why are manufacturers still supporting composite video on high-end 1080p projectors?)

The interface panel is rounded out by a pair of 12V triggers for powered screens and anamorphic lens adapters, an RS-232 jack for remote control, and another DIN jack that connects to the EY-3D-EMT1 IR emitter through a short (1 meter) or long (15 meter) cable. The emitter can be attached to the lower front panel of the projector, or positioned under your projection screen.

The supplied remote control is identical in function to all previous Mits remotes (I inadvertently turned on my Mits HC6000 a few times with it), except that it has a black housing. You can directly access any input, jump to preset picture modes, operate the powered lens functions, and step through the iris settings. The only exception is that the STANDBY button now toggles between 2D and 3D display modes.

MENUS AND ADJUSTMENTS

Mitsubishi 3LCD projectors are known for high image quality and part of the reason is the detailed menus provided for in-depth calibrations. That protocol continues with the LCoS-powered HC9000D. Four different picture preset modes (Cinema, Video, 3D, Dynamic) are provided for viewing, along with three USER memory slots.

Gamma correction is also possible through five presets (Cinema, 2.0, 2.1, 2.2, 3D, and USER), and the USER gamma adjustments offer detailed adjustments of white, red, green, and blue at 15 grayscale steps. That is a tremendous amount of tweaking at your fingertips,We specialize in providing third party merchant account. if you are that fanatical about precise gamma response.

Color temperature and white balance adjustments are also available for each USER mode, or you can select from one of six presets, including 5800K, 6000K,Free DIY Wholesale pet supplies Resource! and 6500K. None of these are completely accurate,is the 'solar panel revolution' upon us? but will get you into the ballpark. There are also a set of color management controls for all six primaries that I suggest you avoid playing with, as they don't exactly work as intended in their current implementation.

The menu complement is rounded out with three different levels of black set-up (0, 3.75, and 7.5 IRE), a ¡®cinema filter,' 3:2 frame rate conversion or ¡®true' (native) frame rate selections, and various adjustments for noise reduction and detail enhancement. The former will soften the image to hide digital noise artifacts, while the latter may enhance edge transitions too much. I'd leave ¡®em both off if possible.

The HC9000D also has Image Anyplace software built-in. It lets you re-map the pixels on a projected image to correct for off-axis projection, such as a severe high and wide angle. While Image Anyplace works quite well, it does impact image resolution as it decimates pixels to correct for trapezoidal distortion. (It can also fix lens distortions like barreling and pincushioning.)

You are much better off mounting the projector as close to the optical centerline of the screen as possible, and using the lens shift controls to move the image into position. Try to avoid any adjustments that manipulate pixels to correct for geometry!

The HDMI inputs have their own sets of tweaks.uy sculpture direct from us at low prices You can manually select the HDMI color depth (4:2:2, 4:4:4, or RGB), or let the projector configure it for you. There are also four different HDMI inputs modes ¨C Auto, Standard, Enhanced, and Super White.

It's best to leave this setting in Auto, as it will pick the correct color bit depth for each connected input.Detailed information on the causes of dstti, Enhanced is usually selected for PC input connections, but I have no idea what ¡®Super White' is intended to do: The manual just says, ¡°Select when solid white occurs." Any guesses?

There are also a few useful 3D image adjustments. The only 3D mode that is detected automatically by the HC9000D is the Blu-ray 1080p/24 frame-packing format, so called because it packs both left eye and right eye video into a single BD frame with 45 pixels of blanking for a total of 1920¡Á2205 pixels. On the other hand, the so-called frame compatible' 3D formats (also known as ¡®half-resolution' formats) must be selected manually in the 3D menu, and include top+bottom (720p) and side-by-side (1080i).

You can compensate for light attenuation through polarization losses by boosting projector brightness in five steps, with 5.0 being the default setting. The sync pulse for active shutter glasses can also be reversed if needed in this menu. Normally, you should not need to play with either control (and as you'll find out, a brighter screen will do you more good than the 3D brightness compensation settings!).

The last control I should point out is the ever-present Iris adjustment. Dynamic iris controls are de rigueur for LCD and LCoS projectors to drop black levels and improve contrast on low-level video content. I have never liked these adjustments because of the non-linear effect they have on gamma curves, and prefer to leave them off and just work with whatever dynamic range the projector manufacturer brought to the table ¨C which isn't as bad as you might think most of the time.

If you must use the iris settings, you have four different presets (Open, 3, 2, and 1), plus 18 steps of irising in the User menu. My advice? Set your black levels correctly and adjust the contrast for best dynamic range, and just live with it. In 2D mode, the black levels may be a bit higher than you'd want, but in 3D mode, you won't see them anyway with the glasses on.

沒有留言:

張貼留言